s b e s b s .

-y

N
e 5\3 Pe g

. e e % L A
: e AR
ks - W PSS L
o - sk IR T
(e,
L RN (ARl S &
o o LS N e
VTSN Y LRSS
L L e LIRS
e e - - o o e g
i P A S
R SR s COMAGD
oy e .. P g
A Gl
PP arel R c e - .
LAY
eI e e v . . B -
o a
L - . EE - PR . . .
P R I .
R L R I . . - E
. ok - BT SR R T
o P A A . . R : R T T b o i s o s e e e ron e o e e e e
- A . - I R I AT N Yo ¥, T I .
. s e L B e L LI e i o e o o o o b o sl o s VP S " P b e i e w < e
- S mm e
. P P
P

-~ Commands Supplement

o

-

N

-
g
&
“
:
0%
1

1

.
2

o

£

> pet G

ho

i

£ia

]

-

S SEN Y

s snom o

[
;4;! gn% §:;§
5 & & o

5

3 ;x el

[

LY

Fren

L Ol
. CoUE i
S ; Do :
Sl P
S L e e e e e e
e A
P CTTLITITIE
GO0 Ll

@y LALRLTIL
PO, R
AN N S . PR
S Sa
b
Epst
. 7

SoF

Contents -

System EXClUSIVE ..o et 3
General Message fOrmat . ..o e e e 4
Nibbieization of data in MIDI MESSAGESccvririeemiiieereeeeerirre e e eeeeee e e e e e e eeeenaans 4
Notation used in describing SysEx message Stringseeeeeieeeieriiieiiceiiiee e, 5
MeSSage DESCTIPLIONS 1oitiriiiiriiiie ettt iiseretrasts s sesennrissserarteasenssnnnsserrnranneeeennnns 6

Data Object Dump Request (main id == 0Th)oiiiiiriiiiiiieecrreee e, 6
Data Object Dump (main id == 02h)ciiiiiiieerr e e 6
Data Object Delete Request (main id == 030} ...iueeviiiiiriiiiie e, 7
Parameter-less Reply Message (main id == 10h) ..., 7
General (global) Control/Info messages - non-nibbleized (main id == 11h) 7
Remote front-panel button-stroke command (sib id == 0Th)ceccvevveeereceeeiereeeeeenen 8
Current Bank Name (sub id == 02h) e ereeeeareeateeteeteeteebeeranseanseeeeaneeres 8
Byte Parameter Messages (Sub id == 03h) ...uuuiiiiiiccccce e 8
Playback Mode (extended id == 01h) ..ccoooiriiiiiiiii e e 9
MIDI Receive Mode (extended id == 02h)cociiveiiinnin, 9
Omni/Poly MIDI channel (extended id == 03h) ...ceeeiieiiiiiiiiiiiiiii e 9
Omni/Poly Main Volume (extended id == 04h)cccooiiiiiiiiiiiiiice e 10
Program Change Disable (extended id == 05}ccooiiiiiiiiiiiiiiieeee s 10
Data Object Directory Info Requests (main id == 12h) ..., 10
Data Object Directory Status Request (sub id == 01h)ccooiriiiiiiiiii e, 10
Data Object Directory Request (Sub id == 02h) ..ooooueeiieeieeee e 10
Data Object Directory Info Messages (main id == 04h)0. aeeereerre e, 10
Data Object Directory Status Message (sub id == O1h)cccoovveiiiiinnnnnee. S 10
Data Object Directory Message (sub id == 02h) ..ceouorerrmmr e, 11
Disk Access Messages (main id == 30R} ... 12
Disk Bank Load Request (sub id == 01h) ...ccccoiiiiiiiiiiie e 12
Remote Edit Operation Messages (main id == 31h) ..., 12
Merge to Stereo Command (sub id == 01h) ..., 13
General {global) Control/Info Messages - nibbleized (main id == 32h)c.c......o.... 13
Word Parameter Messages (sub id == 03h)coouiiii e, 13
Master Tune (extended id == OTh) ...oooeuiiiiiii e e e 13

System Exclusive Data Object Definitionsccooooieiiiiccciiiiiciniiiiinnee. e ———————— 14
Wave control block data object: 64 (0Xx40) bytes ... e 16
Tone Block Data Object: 80 (OX50) BYteS oveeeeivriicii e reree e e s e e e e 18
Map Block Data Object: 32 + 16n (0x20 + 0x10n) bytes (n = number of zones)......... 21
Map Header Block Data Object: 32 (0X20) Dytes ..oeiiccariiiiiiiieiiiiecreerieeerias s ene e 21
Map Zone Block Data Object: 16 (OX10) bytes ...coovermmiciiiiiiciriiie e 22
Preset Block Data Object: 256 (OX100) BYLES ..vuuueeriiiiiciiiiiiieeee e eee e eeveeaieens 23
Multi Setup Block Data Object: 96 (OX60) DYLES ccivvvuriviiriiiiiicriiieeer e ceesi e eeeeeiene 25

| (0] - TN 26

i

SYSTEM EXCLUSIVE

The definitions in this document apply to both MIDI and SMDI interfaces. SMDI utilizes MIDI-style
message strings transmitted via the SMDI “transmit MIDI message™ message. The same set of
messages is used on both interfaces, with only minor changes to format necessitated by the 7-
bit restriction on MIDI data bytes (see “nibbleization ...” below).

It is possible to handle these messages in an identical fashion regardless of which interface they
are sent over, provided that the format differences are correctly accommodated. The response
of the SP to system exclusive messages is identical for both interfaces, except that SysEx device
id (i.e., MIDI SysEx channel) values are ignored when messages come in via SMDI. SMDI MIDI
SysEx messages are always accepted regardless of the MIDI SysEx channel info they contain,
because SMDI messages are inherently delivered only to the intended SMDI slave device.

Data SysEx messages sent to the SP always produce some sort of reply, also in the form of a MIDI
message. The possible replies to each message are specified in the description of each message.
Where such replies are defined, some reply will always be given unless the incoming message was
missed or had to be ignored. Messages may be missed if they arrive when the SP is engaged in
floppy or SCSI disk or SMDI sample [/O, sample editing functions such as copying or deleting,
or similar activities which suspend normal MIDI receive handling. MIDI SysEx messages will be
ignored even though received if they arrive when the SP is currently responding to a SysEx
message delivered via SMDI. Such messages will not be kept pending. Otherwise, response
messages will usually appear nearly instantaneously, with the following exceptions: creation of
a new data object in the SP, or updating of an existing map to change the number of zones it
contains, may entail worst-case response delays of up to 100 msec, although usually much less;
deletion of a wave will incur response delays of from nearly zero to as much as 20 seconds
depending on the amount of installed sample memory and how much of it is currently allocated,
as well as the location of the deleted wave. Except for the wave deletion case, a response time-
out of 150-200 msec should be more than adequate.

Replies which are defined for MIDI SysEx messages are also used to reply to SysEx messages
received via SMDI. Similar response timing specifications apply. If a SysEx message is delivered
via SMDI to an SP at a time when the SP is receiving and/or responding to a MIDI SysEx message,
the SMDI message will be rejected with SMDI rejection code “device is busy”. An SP which is
engaged in floppy 1/O, sample editing or MIDI sample dump act1v1t1es will not respond to SCSI
selection attempts.

For control, parameter or performance SysEx messages which have no defined MIDIreply, a SMDI
master should expect a “no message” SMDI reply under normal conditions.

General Message format

|

I

|

| msg sub id
I

I

I

msg main id
MIDI SysEx device id {(SysEx channel number)

SP product id

I
I
I
I
I
I
I
I
I
I
I
|
|
|
]
I
I
| keyboard product family id
I

Peavey mir id

Bytes 0-6 are the same in all messages. Bytes 7-8 are rmessage main id and sub id codes. Subsequent bytes are
defined as shown below, with varying definitions from message tc message.

%

Nibbleization of data in MIDI Messages:

Messages used to transmit values which cannot be conveniently represented in 7-bit MIDI data bytes use nibbleization
of data, in which the transmitted MIDI bytes each contain successive nibbles of data in bits 3-0 and have zeroes in
bits 6-4. Multi-byte values are nibbleized one byte at a time starting with the most significant byte (or starting with:
the lowest- addressed byte, in the case of character string values such as narmnes). The ms nibble of each byte is
transmitted first, followed by the s nibble. Thus, the value Oxab would be transmitied as { 0x0a 0x0b }, while the
value 0x1f398ac3 would go out as { 0x01 0x0f 0x03 0x09 0x08 0x0a 0x0c 0x03 }. Note that only specific sections
of such messages contain nibbleized data - mft/product id codes, channel numbers, message id codes etc. are never
nibbleized. The message descriptions presented below specify the details of this for each defined message.

Nibbleization of data is used only for MIDI transmission of messages. SMDI transmission of messages does notrequire
it, since all eight bits of each byte are available for use. In this context, 16-bit and larger values are transmitted ms
byte first. Otherwise, as a rule, a given message looks exactly the same regardless of which interface it is transmitted
over. When receiving such messages from the SP via MIDI, packing the nibbleized portions back into bytes as they
arrive will render them identical to their SMDI counterparts and facilitate common handling of these messages from
either interface. Note that the use of non-nibbleized raw data in SMDI SysEx messages means that these strings are
not strictly “MIDI legal” - there will be 8-bit values in data byte positions. As a consequence, such strings cannoct be
handled literally as MIDI messages. However, the data which arrives in this format is directly ready for use without
further processing, resulting in optimal speed and simplicity of handling. MIDI strings which contain nibbleized data
must be converted to this format before they can be used. Thus, it is considered preferable to orient MIDI handling
towards the common, non-encoded format rather than to require SMDI messages to adhere to strict MIDI limitations.

Notation used in describing SysEx message strings:

ccC

tt

nm

13121110

vl vO

WWWW
w3 w2 wl w0
tttt

t3t211 0
mmmm

m3 m2 m1 mO0
PPPP

p3 p2 pl p0
uuuu

u3 u2 ul ud

channel number (SysEx device channel 0-7f).

the SP will respond to messages on channel 7f regardiess of its current SysEx channel
setting.

data object type id code (usually msg sub-id).

00 = wave
01 =tone
02 = map
03 = preset

04 = multi setup

05 = map header block

06 = map zone block
additional message length.
additional msg length (nibbleized, ms to Is).
Indicates number of additional data bytes in msg beyond the length value and not including
EQX. Count is made with data bytes *not* nibbleized — thus the actual nurmber of additional
MIDI bytes will be twice this value, not counting EOX. Messages which incorporate this
parameter will also include it when sent via SMDI, even though it is in that case redundant
info (SMDI has its own version of this parameter), in order to maintain consistency with MIDI
message format. ‘
data object dump format code.
data object dump format code {nibbleized ms-Is).
Allows flagging of dump messages in updated formats, to avoid incorrect interpretation of
message contents by units or programs working with older or newer versions of software. May
be different for different data objects. Always == 00 until further notice.
wave number.
wave number (nibbleized, ms to Is).
tone number.
tone number (nibbleized, ms to Is}.
map number.
map number (nibbleized, ms to ls).
preset number.
preset number {nibbleized, ms to Is).

multi setup number.

multi setup number {nibbleized, ms to ls}.

ZZIMm

z1 z0 m1 mO

0000

o3 02 0l o0

XX

Ox Ox

map zone selector.

map zone selector {nibbleized, ms to Is).

generic data object number {(any of the above).

data object number (nibbleized, ms to Is).

Object numbers are transmitted as 16-bit values, even though no object index currently has
an upper limit value greater than 199. Note that the map zone selector is not an object number
in the same sense as is applicable to the other listed objects. Refer to the section on map zone
block messages for details.

generic data object or other message data byte.

generic data object or other message data byte, nibbleized into two bytes for transmission
via MIDI (see notes above re-nibbleization method).

Message Descriptions:

Data Object Dump Request (main id == 01h):

SMDI:

fO 00 00 1b 02 05 cc 01 tt 1l cooo 7

MIDI:

f0 00 00 1b 02 05 cc 01 tt13 1211 10 03 02 o1 o0 f7

13121110/11ll = 0002 in all cases.

H

The SP will respond with a data object dump message if it is able to, or with a parameter-less reply message (see

below).

Data Object Dump (main id == 02h):

SMDI:

fO 00 00 1b 02 05 ¢cc 02 tt Hll oooo v xx .. xx 7

MIDI:

f0O00001b0205cc 0213121110 03 02 01 00 v1 vO Ox Ox .. Ox Ox {7

Qutput by an SP in response to data object dump request messages. In general, when a data object dump message
is received by an SP, an existing data object at the specified location will be replaced - if no object exists at this
location, a new one will be created. The SP will generate a parameter-less reply message (see below) as a response
to a received data object dump message. A device sending such messages to the SP should await this reply before
sending any further data object dump messages, in order to confirm that the response of the SP to the message was
as expected and to guarantee that the SP will not be overrun by any subsequent incoming messages. Ingeneral, longer
response delays will occur with messages which result in the creation of new objects as opposed to the replacement
of existing ones. Specific considerations related to the use of this message with each defined data object are dealt
with in the section on data objects which follows.

Data Object Delete Request (main id == 03h):

SMDI:
f0 00 00 1b 02 05 ¢c 03 tt 1lll oooo f7

MIDI:
f000001b0205¢cc 0313121110 03 02 01 00 f7

13121110/111 = 0002 in all cases.

The SP will generate a parameter-less reply message (see below) as a response to a received data object delete
message. A device sending such messages to the SP should await this reply before sending any further messages,
in order to confirm that the response of the SP to the message was as expected and to guarantee that the SP will not
be overrun by any subsequent incoming messages. Note the following:

¢ This message will cause only the object specifically addressed to be deleted. Linked objects will not be
deleted. For example, the maps, tones and waves used by a preset will not be deleted when the preset
is deleted.

¢ An object number (03020100/0000) value of -1 (Oxffff) specifies that all existing objects of the type
indicated by tt are to be deleted. '

¢ A value of Ox7f for tt will cause deletion of all samples and data objects and complete re-initialization
of the internal data state of the SP to the same state which results from use of the “clear all of memory”
front-panel function.

* When this message is addressed to a wave, both the wave control block associated with the wave and
the wave itself are deleted. Response delays associated with deletion of a wave may be very large - up
to 20 seconds in a fully-loaded unit. '

§

Parameter-less Reply Message (main id == 10h):

MIDI/SMDI:
f0 00 00 1b 02 05 cc 10 rr 00 7

responses to received messages, as defined per message. i = response code.

defined response codes:

00h - Nno error

01h - -unrecognized message

02h - truncated message

03h - error in message string

04h - - specified data object is empty/nonexistent
05h - " specified data object number is out of range
06h - insufficient memory is available

07h - unreccgnized data object dump format code
08h - illegal request

0%h - device is busy

Oah - operation failed

0bh - illegal data value encountered

General (global) Control/Info Messages - non-nibbleized (main id == '1 1h):

These messages are used to obtain or alter global settings not associated with arrayed data objects, or to otherwise
alter the state of the SP. The data content of these messages consists of individual bytes or strings of bytes, each of
which is inherently limited to values between 0 and 0x7f, thus making nibblejzation unnecessary. For all messages

in this group, the SMDI and MIDI strings are identical. In these messages, the byte which immediately follows the sub
id byte indicates the number of additional message bytes, not including EOX.

Remote front-panel button-stroke command (sub id == 01h):
f0 00 00 1b 02 05 cc 11 01 01 bb f7

The SP will respond as though one of its twelve front-panel buttons has been actuated manually. The result of this
action depends entirely upon the current state of the front panel system.

values for the button-number parameter bb are as follows:

C0o - preset

01 - map

02 - tone

03 - wave

04 - disk

05 - global

06 - utility

07 - exec

08 - +/inc

02 - -/dec

10 - cursor left
11 - cursor right

The SP will respond with a “no error” parameter-less reply message after all local activity prompted by the switch
event is complete. Although any of the SP’s buttons can be pushed remotely via this command, the intended use of
this capability is simple switching among the handful of screens which happen to be current under the function buttons
associated with editable object types (preset, map etc.}, so that the SP front panel can visibly display the item which
is being manipulated via SysEx messages. The state of the front panel system cannot be ascertained remotely, and
the set of functions under each function button is subject to change with any software revision, as is the operation
of any given existing function, including the screen layout of the function. Therefore this command is not a reliable
method of remotely setting the SP into a specific function screen, nor of remotely commanding specific local
operations.

Current Bank Name (sub id == 02h):

get current bank name:
fO 00 00 1b 02 05 cc 11 02 01 00 f7

(set) current bank name:
fO00001b0205¢c 11020f0Innnn nnnn {7

“nnnn....nnnn" is a 14-character raw ASCII bank name string. The “(set) current bank name” message is output
by the SP as a reply to the “get current bank name” message, or is recognized as an input command to change the
current bank name in the SP. The altered bank name will be written to disk with sound data on any subsequent disk
save gperation.

Byte Parameter Messages (sub id == 03h):

These are used to get or set a byte-value global parameter in the SP, They are distinguished from one another by
an “extended” id byte which follows the additional message length byte. The “extended” id byte is followed by a 00h
byte in “get” messages, and by a 01h byte in “(set)” messages. The additional message length byte is always
02h for “get" messages, and 03h for “(set}” messages, which also include the transmitted byte value as the
last byte in the string.

Playback Mode (extended id == 01h):

get playback mode: ‘
f0 00 00 1b 02 05 cc 11 03 02 01 00 f7

(set) playback mode:
fO00001b0205¢cc 1103 03 01 01 pp £7

values for pp:

00 - per MIDI rcv mode
01 - what's on display
02 - current edit preset
03 - current edit map
04 - current edit tone
05 - current edit wave

The “(set) playback mode” message is output by the SP as a reply to the “get playback mode” message, or is
recognized as an input command to change the current playback mode in the SP. Note that this is equivalent to the
setting accessed via the front panel “MIDI notes play:” function, and is distinct from the MIDI receive mode setting.
Settings other than “per MIDI rcv mode” (i.e., normal operation) override the existing MIDI receive mode and force
the SP into omni mode. Changes to this setting are likely to cause all currently playing voices to be turned off.

MIDI Receive Mode (extended id == 02h):

get MIDI receive mode:
f0 00 00 1b 02 05 cc 11 03 02 02 00 f7

(set} MIDI receive mode:
f000 00 1b 02 05¢cc 11 03 03 02 01 pp 7

values for pp:

00 - omni
01 - poly
02 - multi

The “(5et) MIDI receive mode” message is output by the SP as a reply to the “get MIDI receive mode” message, or
is recognized as an input command to change the current MIDI receive mode in the SP. Changes to this setting will
cause all currently playing voices to be turned off. Note that settings other than “per MIDI rcv mode” (i.e., normal
operation) for the current playback mode (see “playback mode” above) will override the existing MIDI receive mode
and force the SP into omni mode.

Omni/Poly MIDI channel (extended id == 03h):

get omni/poly MIDI channel:
fO 00 00 1b 02 05 cc 11 03 02 03 00 {7

(set) omni/poly MID! channel:
f0 00 00 1b 02 05¢cc 11 03 03 03 01 pp 7

pp = channel number 0-15.

The “(set) omni/poly MIDI channel” message is output by the SP as a reply to the “get omni/poly MIDI channel”
message, or is recognized as an input command to change the current poly mode MIDI receive channel in the SP.
Changes to this setting will cause all currently playing voices to be turned off. Note that settings other than “per MIDI
rcv mode” (i.e., normal operation) for the current playback mode (see “playback mode” above) will override the

10

existing MIDI receive mode and force the SP into omni mode. The “omni/poly” designation is used to distinguish thi
setting from corresponding multi mode settings, which it is completely independent of. -

Omni/Poly Main Volume (extended id == 04h):

get omni/poly main volume:
f0 00 00 1b 0205 cc 11 03 02 04 00 7

(set} omni/poly main volume:
fO00001b0205¢cc 1103030401 pp {7

pp = main volume value 0-127.

The “(set) omni/poly main volume” message is output by the SP as a reply to the “get omni/poly main volume”
message, or is recognized as an input command to change the current omni/poly main volurne in the SP. The “(set)
omni/poly main volume” message is recognized by the SP for consistency, even though the same result can be
obtained using a standard main volume channel message if the SP is not currently in multi mode. The “omni/poly”
designation is used to distinguish this setting from corresponding multi mode settings, which it is completely
independent of.)

Program Change Disable (extended id == 05h):

get program change disable:
f0O 0000 1b0205cc 1103 02 05 00 7

(set) program change disable:
f0 00 00 1b 02 05 ¢c 11 03 03 05 01 pp {7

pp = 00 (program change not disabled} or 01 (program change disabled})

The “(set) program change disable” message is output by the SP as a reply to the “get program change disable”
message, or is recognized as an input command to activate or deactivate program change disable in the SP. When
activated, the SP will ignore MIDI program change messages in all MIDI modes.

Sample Mode (extended id == 06h):

get sample mode: .
f0 00 00 1b 02 05 cc 11 03 02 06 00 f7

(set) sample mode:
fO00001b0205¢cc 11030306 01 pp {7

pp = 00 {(one-shot stop at end) or 01 {endless, manual stop)
The “(set) sample mode” message is output by the SP as a reply to the “get sample mode” message, or is recognized
as an input command to alter the current sample mode in the SP. It should be noted that SysEx remote actuation

of sampling via the SX Il is not compatible with the endless mode, and will force the SP into one-shot mode if
performed.

Sample Loop default (extended id == 07h):

get sample loop default:
fO 00 00 1b 02 05 ¢cc 11 03 02 07 00 {7

(set) sample loop default:
fO00001b0205¢c 1103030701 pp {7

pp = 00 {default == loop disabled) or 01 {default == loop enabled)
The “(set) sample loop default” message is output by the SP as a reply to the “get sample loop default” message,

or is recognized as an input command te alter the sample loop default in the SP. This parameter controls the state
cof the loop enable in new samples taken via the SX Il direct sampling.

Maximum- Sample Length enable (extended id == 08h):

get maximum sample length enable:
f000 00 1b 0205 cc 11 03 02 08 00 £7

(set) maximum sample length enable:
f00000 1b0205¢c 11 03 03 08 01 pp 17

pp = 00 (length limit disabled} or 01 (length limit enabled)
The “(set) maximum sample length enable” message is output by the SP as a reply to the “get maximum sample

length enable” message, or is recognized as an input command to activate or deactivate the sample length limit in
the SP. The maximum sample length parameter limits the length of new samples taken via SX Il direct sampling.

Data Object Directory Info Requests (main id == 12h):
Data Object Directory Status Request (sub id == 01h):

SMDI/MIDI:
fOO0001b0205¢cc 1201 01t 7

The SP will respond with & data object directory status message (see below). Note that this message is not valid for
map header blocks or map zone blocks, which are components of the map block object and are not maintained in
directories. '

Data Object Directory Request (sub id == 02h):

SMDI/MIDI:
f0O 0000 Ib 02 05 cc 12 02 01 tt £7

The SP will respond with a data object directory message (see below). Note that this message is not valid for map

header blocks or map zone blocks, which are components of the map block object and are not maintained in
directories.

Data Object Directory Info Messages (main id == 04h):

Data Object Directory Status Message (sub id == 01h):
SMDI:
f0 00 00 1b 02 05 cc 04 01 lill tt vv aaaa eeee nnnn gggg hhhh bbbbbb rrrrrr ffffff ssss yyyy 7

MIDI:
f000001b0205cc040113121110t1t0 vl vO a3 a2 al ade3 e2 el eOn3 n2nl n0 g3 g2 gl g0 h3
h2h1 hOb5b4 b3 b2bl bO 514 131211 10 15 4 {3 12 f1 fO £3 52 51 s0 y3 y2 y1 y0 {7

13121110/11 = 0019 in all cases.

Qutput by an SP in response to data object directory status request messages. Provides a condensed overview of
directory status for the indicated data object type:

vv - object dump format code considered current by the version of SP firmware running in the unit -
being accessed for the type of object indicated.

11

12

aaaa - maximurn capacity of the directory for the type of object indicated - i.e., the largest total number of
objects which can ever be listed in this directory, assuming parameter memory availability is not a

limitation.

ceee - maximum extent of the directery for the type of object indicated - i.e., the highest object number
allowable in this directory. This number and the capacity number aaaa are usually (but not always)
the same.

nnnn - the number of objects currently listed in this directory.

gagag - the object number of the lowest-numbered object currently listed in this directory. A value of zero will

be retumed for this parameter if the specified directory is currently empty.

hhhh - the object number of the highest-numbered object currently listed in this directory. A value of
zero will be returned for this parameter if the specified directory is currently empty.

bbbbbb - the number of parameter memory bytes currently allocated to this directory.

rrrrr - the number of additional parameter memory bytes available to this directory, assuming parameter
memory availability is not a limitation. If the free parameter memory value ffffffis smaller than this,
then ffffff indicates the true amount of additional parameter memory available.

fEftE - the number of additional parameter memory bytes available at large - i.e., for allocation to any
directory. This value is the same regardless of the object type for which directory status is being
provided. When this value is smaller than the rrrrrrvalue retumed in this message, the fiffffvalue takes
precedence over the rrrrrr value.

S588 - the number of k-words of installed sample memory (each word equals two bytes).

VYyy - the number of k-words of available sample memory (each word equals two bytes).

Mote that this message is not defined for map header blocks or map zone blocks, which are components of the map
block object and are not maintained in directories.

Data Object Directory Message (sub id == 02h):

SMDIL
f0 00 00 1b 02 05 cc 04 02 11l tt vv [ooco nnnnnnnnnnnnnnnnnnnnnnnnonan [, ... J] f7

MIDI:
fO00001b0205¢cc0402131211101t1 t0 vl v0 [03 02 01 00 On On On On On On On On On On On On On
OnOnOnOnOnOnOnOnOnOnOnOnOnOndlni,..]J..]f7

Output by an SP in response to data object directory request messages. Provides a condensed listing of directory
contents for the indicated data object type. The main body of the message consists of zero or more object number/
object name pairs. The name is a 14-byte ASCII string. Thus, the length parameter llll is always 16 times the number
of objects listed, plus 2 (for the tt and vv bytes). Object names are presented in order of increasing ebject number.
No output is generated for currently-unused object numbers - these are simply skipped. If there are currently none
of the indicated object type in memory, then EOX (f7) will directly follow the dump format version code vv. Systems
which need to know the size of this message in advance of receiving it, in order, for example, to assist in allocating
a buffer to hold the message, should request a dump of object directory status for the object type in question (see
above).

Note that this message is not defined for map header blocks or map zone blocks, which are components of the map
block object and are not maintained in directories.

Disk Access Messages (main id == 30h):
Disk Bank Load Request (sub id == 01h):

SMDI:
fO 00 00 1b 02 05 cc 30 01 11l dd bbbb {7

MIDI:
f0 00 00 1b 02 05 cc 30 01 131211 10 d1 dO b3 b2 b1 bO {7

13121110/1l1 = 0003 in all cases.
Commands the SP to load a sound bank from disk.

dd - drive selector. Valid values are 0-G for external SCSI drives (dd is used dlrectly as the SC8l id) or
7th to specify loading from the 1nternal floppy drive.

bbbb - bank number. Applies only to SCSl disk accesses - is ignored when accessing floppy disk.

The SP will respond with a parameter-less reply message as soon as the outcome of the command is resclved. The
reply can be used as a signal that the requested operation is complete, and that the SP is ready for normal MIDI play
response or a subsequent SysEx command. Note that in the case of very large disk banks which load as intended,
the delay before the detection of the “no error” reply may be as much as two minutes. Replies indicating disk access
errors, on the other hand, will be returned very quickly. Any error related to the disk access (as opposed to the SysEx
messade itself) will result in an “operation failed” reply. This includes such things as attempting to load from floppy
with no disk inserted, addressing an unoccupied SCSIid, or specifying an empty bank. While this is not a particularly
informative reply, it is assumed that this command will find its greatest use in turnkey or, unattended installations
based upon reliable response to carefully specified commands carried out under well-controlled conditions. In this
context, more specific information about failed operations would be of relatively little use to the controlling system,
since such failures can only be corrected via manual intervention. However, the SP display will provide very specific
and informative error messages in such cases, which will facilitate froubleshooting and debugging of such
installations.

Remote Edit Operation Messages (main id == 31h):

These messages are used to remotely command edit operations equivalent to those which may be performed
manually via the SP front panel. They use a four-digit additional message length immediately following the sub id
byte and, when transmitted via MIDI, nibbleization of all subsequent message bytes up to the EOX. These commands
may return the “operation failed” parameter-less reply message. In most such cases, a more specific error message
will appear on the SP front panel display. Edit operations which alter sample data in any way may incur substantial
delays before the reply is available.

Merge to Stereo Command (sub id == 01h):

SMDI:
fO 00 00 1b 02 05 cc 31 01 Il eeee iiii f7
MIDI:
f000001b0205¢cc310113121110e3e2el e0i3i2il i0f7
1l = 0004 eeee = left wave number .. diii - right wave number

The rlght wave is “subsumed” into the left wave to form a stereo wave at the left wave location. The right wave location
is left empty. This operation can fail for any of a number of reasons related to specifics of the samples involved or
the amount of free sample memory available. Failure causes are displayed on the SP LCD if they arise.

14

General (global) Control/Info Messages - nibbleized (main id == 32h):

These messages are used to obtain or alter global seitings not associated with arrayed data objects, or to otherwise
alter the state of the SP. The data content of these messages consists of individual word or long-word values or strings
of same, thus making nibbleization necessary. They use a four-digit additional message length immediately following
the sub id byte and, when transmitted via MIDI, nibbleization of all subsequent message bytes up to the EOX.

Word Parameter Messages (sub id == 03h):

These are used to get or set a word-value global parameter in the SP. They are distinguished from one ancther by
an “extended” id byte which follows the additional message length. The “extended” id byte is followed by a 00h byte
in “get" messages, and by a O1h byte in “(set)” messages. The additional message length byte is always 02h
for “get” messages, and 04h for “(set)” messages, which also include the transmitted word value as the last

item in the string. (MNote that all references to “bytes” in the above refer to bytes which appear after the additional
message length parameter, and which are therefore nibbleized if transmitted via MIDI).

Master Tune (extended id == 01h):
(fet master tune:

SMDI: '
fO 00 00 1b 02 05 ¢ 32 01 0002 01 00 7

MIDL:
fO 00 00 1b 02 05 cc 32 01 00 00 00 02 00 01 00 00 f7

(set) master tune:

SMDI:
f0 00 00 1b 02 05 cc 32 01 0004 01 01 pppp f7

MIDI:
f0 00 00 1b 02 05 cc 32 01 00 00 00 04 00 01 00 01 p3 p2 p1 pO 7

PPPP = master tune value in cents, -12000 through +12000.

The “(set) master tune” message is output by the SP as a reply to the “get master tune” message, or is recognized
as an input command to change the current master tune setting in the SP.

Maximum Sample Length (extended id == 02h):
get maximum sample lengthi B

SMDI:
f0 00 00 1b 02 05 cc 32 01 0002 02 00 {7

MIDI:
f0 00 00 1b 02 05 ¢cc 32 01 00 00 Q0 02 00 02 00 00 f7

(set) maximum sample length:

SMDI:
f0 00 00 1b 02 05 cc 32 01 0004 02 01 pppp 7

MIDI:
f0 00 00 1b 02 05 cc 32 01 00 00 00 04 00 02 00 01 p3 p2 pl p0 7

pppp = maximum sample length value in k words

The “(set) maximum sample length” message is output by the SP as a reply to the “get maximum sample length”
message, or is recognized as an input command to change the current maximum sample length setting in the SP.
This parameter (when enabled) limits the length of new samples taken via 8X I direct sampling. Values smaller than
8 (i.e., for 8k words) are rejected by the SP. Any larger value is permissible, but values which exceed the amount
of installed sample memory in the SP are limited to that value.

Remote SMDI Operation Messages (main id == 33h).

These messages are used to remotely command SMDI operations equivalent to those which may be performed
manually via the SP front panel. They use a four-digit additional message length immediately following the sub id
byte and, when transmitted via MIDI, nibbleization of all subsequent message bytes up to the EOX. These commands
may return the “operation” failed parameterless reply message. In most cases, a more specific error message will
appear on the SP front panel display. Many of these operations involve sample data transfer and may incur substantial
delays before the reply is available.

Start Sampling Command (sub id == 01h);

SMDI:
fO 00 00 1b 02 05 cc 33 01 1l dd wwww 7 °
MIDI: ‘
fO00001b0205¢cc330113121110d1 dO w3 w2 wl w0 {7
11 = 0002
dd = S8MDI slave device selector (SCSI id)
= wave number

WWWW

This message is used to remotely command SX Il direct sampling to begin. Valid values for the dd parameter are
0-6. This message may return the “insufficient memory is available” of “specific data object number is out of range”
parameterless reply messages without attempting to record a sample. If sampling is started, no reply will appear until
it stops. If the stop occurs because of a SCSI, internal or other error, the “operation failed” parameterless reply
message will appear. Because the SP cannot receive MIDI messages nor be selected as a SMDI slave while sampling
is in progress, there is no provision made for remotely stopping sampling — the SP must be recording in one-shot
mode. If this command is received while the SP is set for endless mode, manual stop recording, the mode will
automatically be changed to one-shot mode.

SYSTEM EXCLUSIVE DATA OBJECT DEFINITIONS:

Structure Notes:

Data objects as defined below fit exactly into the “xx .. xx” field of the data object dump message string described
above. These objects are fixed data structures consisting of packed 8-bit, 16-bit and 32-bit parameters. However,
note that all 16-bit and 32-bit parameters contained within a data object { xx .. xx } will be word-aligned if the object
is extracted from its message and stored starting on a word-aligned address. Object lengths specified below are for
the objects only and do not include the additional bytes needed to form complete system exclusive messages.

The Object Format Code:

When fielding data object dump messages from the SP, it is very important to attend to the object dump format code
(which is part of the dump message, but not actually part of the data objects as defined here). This code is the only
means of detecting differing software revision levels at the data object dump message level - i.e., apart from obtaining
the main firmware revision number directly, which is less useful for this purpose because it is likely to change
frequently, whereas dump formats wili change only infrequently.

The most likely kind of format change is for new variables to be defined in the undefined “excess” areas of an existing
structure, without changes to the previously defined variables or fo the total size of the structure. Because this is
unlikely to occur with all objects formats at the same time, each type of object has its own format code. Objects sent

15

16

to an SP will be rejected if the attached format code value is higher than the one used for that object by the version
of firmware installed in the SP. A given version of SP software may or may not accommodate an object with a lower
format code (i.e., an older format). Messages are defined which allow a master device to query an SP in order to obtain
its working set of format code values. Alternatively, a master device application which is equipped to deal with more
than one format revision level for a given object type should attempt to use the newest one first - if this is rejected,
earlier ones can be tried. However, under no circumstances should objects be sent to the SP with format codes which
are inconsistent with the actual format of the object, as this may result in unpredictable behavior of the SP or more
serious problems such as crashes and data loss. In other words, don’t fudge it. -

The object format code should not be confused with the xxxx_variety parameter which is defined in most data objects.
This parameter is intended as a means of distinguishing between different “varieties” of a particulartype of data object
which are allowed to coexist, should any such varieties ever be defined. At present there is no data object type for
which more than one variety is defined, and this parameter is zero in all instances.

Bulk Transfer Order of Downloading and Speed Optimization:

At present, single-message bulk data transfers are not supported on the SP. In applications where it is desired to
transfer complete bank setups to the SP via systern exclusive messages, the single-object messages described above
must be used. The only mandatory point in this process is that the wave control block for a wave must be downloaded
after the wave itself has been downloaded. Refer to the specific discussion of wave control blocks for more
information as to why this is so.

The SP uses memory management methods with its parameter mermory which can add somewhat to the amount of.
time this process will require if the proper overall crder of downloading is not observed. The actual time penalty is
proportional to the number of data objects currently resident in SP memory. The relative time penalty is greater when
SMDI transfers are used, since the actual data transfer time is comparatively negligible. (However, it should be
mentioned that even in the worst case - in which the reverse of the optimal order is used - the additional time penalty
is not highly significant if sample transfers are also involved, especially if these are done via MIDI, and other
application-specific considerations may therefore overrule this one.) The optimal downloading order is as follows:
clear all of memory (using the delete request message with tt = 0x7f), load each wave {(via MIDI SDS or SMDI sample
transfer protocol) immediately followed by its associated wave control block (optional if SMDI is used), thenload all
tones, next all maps, next all presets and lastly all multi setups and any other global info. Within each object category,
objects may be loaded in any order with respect to their object numbers without restriction or time penalty.

The Presumed Editing Method:

At present, only transfers of complete data objects or sub-objects is supported by SP systemn exclusive messages.

At some later time, the SysEx message system may be extended to permit direct access to some or all of the individual

parameters in each type of data object. Until this occurs, remote editing of SP data objects can be accomplished only

via “read-modify-write” accesses of whole data objects - for example, to rename a preset, request a dump of that

preset, poke a new name into the received preset block, and send it back to the same place with all other values

undisturbed. This method is obviously not suited to real-time performance use. Edits effected via this system are at

best not reflected immediately into voices already playing and in some cases may force immediate shutdown of all

voice playback in order to avoid “orphaned” voices. However, interactive “off-line” patch editing applications should

be able to perform adequately, particularly if they are able to avail themselves of the speed of communications
afforded by SMDI.

For your information - random other stuff:
The character set used by the SP for naming t.hingsris as follows:
abcdefghijklmnopgrstuvwxyz
-ABCDEFGHIJKLMNOPQRSTUVWXYZ
‘S%@M _+*/=[]<>{}#E():2V ,--0123456789
These are the only characters accessible via the SP’s built-in name-editing functions. However, the SP will tolerate-

the appearance in incoming object dumps of names which contain characters not included in this set. Any 8-bit value
is permissible - values outside the defined standard ASCII set will result in characters which depend on the quirks

(and possibly the current state) of the SP’s LCD display module.
Soap box section - propaganda, etc.:

The SP should not be counted upon to range-check and correct the values of each and every parameter sent to it
in data object dump messages - there are simply too many parameters to check. Please make sure that invalid values
are not sent to the SP! They do not arise internally, as a result of which the SP is very reliable and little prone to
mysterious crashes, even though the real-time operating software does not have much in the way of protection
against bad parameter values. At best these may cause the SPto “act kinda funny” - at worst they may lead to quietly-
corrupted data sets (which can then be uploaded or saved to disk and thus propagated who-knows-how-far) or may
activate hitherto undiscovered data-sensitive crash bugs (and who needs that?). Informational assistance is available
if needed, and it is strongly recommended that Peavey engineering be viewed as a primary alpha test site for serious
software under development. Exercise all necessary caution - shake your applications out hard before allowing even
beta testers to have them, and keep your test data sets separate from your “real” ones until you have reason to be
confident about the robustness of your application. Advise your beta testers to do the same, especially if they are
working on sound sets intended for distribution. Note that applications which merely upload data from the SP, archive
it, and download it again should be inherently pretty safe.

The above notwithstanding, beta version 1.2b and later versions do implement a substantial amount of parameter
value checking on data object dumps sent into the SP. Data dumps which appear to contain illegal values are rejected
in their entirety by the SP, which will return an “illegal data value encountered” parameter-less reply message as Its
response. The SP will not attempt to correct illegal values and make them usable. By way of a basic diagnostic, a
rather terse message will appear on the SP front panel display in such cases, indicating the offset into the last-received
data structure at which the offending parameter is located. Because this message can be wiped out by subsequent
SysEx activity (which may or may not trigger error message displays}, it is extremely important to ‘check all replies
to data object transfer messages and to stop SysEx activity immediately if the illegal data value reply appears, so
that diagnostic info is not lost. It should be noted that parameter checking was implemented not solely to guard
against incorrectly constructed SysEx messages, but also to screen out legitimate data sets originating from or
intended for anticipated later versions of SP software in which the number of defined parameters, or the legal value
ranges of certain existing parameters, may be greater than that of the current version. Thus, at some point in the
future, this error message may be a signal that the software installed in a particular unit is not up to the revision level
required for the messages being sent to it. This is one of the reasons why the parameter-check routines will not atternpt
to alter data values which appear illegal. For the moment, the foregoing cautions should still be observed: the
correctness and effectiveness of the parameter checking is itself not yet fully verified, and it should not be relied upon
blindly.

And now

For convenience and to minimize errors and ambiguities, the data objects are specified here as c-style structs which
can be used without modification. They can easily be adapted for assembly-language use according to the following
interpretation: ¢char = 8 bits, int = 16 bits, long = 32 bits.

- Wave control block data object: 64 (0x40) bytes
The valid object number range for this object is 0-199.

This is the descriptive and management info associated with a wave. Note that dump requests which address waves
will obtain only a wave control block as a response. Actual sample data transfer is performed only via MIDI sample
dump (SDS) or using the SMDI samnple transfer protocol. Either of these methods of importing waves into the SP
includes the automatic creation of an associated wave control block in which all parameters are correctly initialized
to the extent permitted by available information (along with the deletion of any previously existing wave and

. associated wave control block at the same wave location in the SP). In the case of SMDI wave transfers, nearly ail

of the information which can be transmitted via a wave control block dump message is also present in the SMDI
sample header message. For simple librarian applications using SMDI sample transfers, wave control biock dump
messages are not necessary.

Many of the parameters which appear in a wave control block dump obtained from the SP are not subject to direct
external modification via SysEx messages, even though the values they contain are valid. Some of these parameters

17

18

may be useful for diagnostic or informational purposes.

A wave control block is always uniquely associated with a wave in sample memory and cannot exist independently
of its associated wave. The wave control block dump message cannot be used to create a new wave control block
in the SP “out of thin air” - it can only be addressed to existing waves. Sending a wave control block dump message
to the SP will not result in outright replacement of an existing wave control block. Values contained in the fields
associated with unmeodifiable parameters will be ignored by the SP. Thus, sending this message to the SP is useful
only as a means of modifying certain parameters in existing wave control blocks - for example, waves can be renamed
by means of this message or have their wave_pitch values altered. Also, even when SMDI sample transfers are used
to send sarnples to the SP, certain parameters such as fine-tune offset or loop fraction are not provided and must be
defaulted. The wave control block dump message can be used to set these parameters after a wave is downloaded
to the SP.

As mentioned above, a wave and its associated wave control block are replaced outright when a new wave is
downloaded to the same wave location. For this reason, sending of a wave control block dump message to the SP
must only be done subsequently to downloading of the associated wave, or the results will not be as intended.

The following list of wave control block parameters is not externally modifiable via SysEx: wave_mode bits 6-0,
wave_location, wave_size, wave_checksum, wave_wordlength, wave_samperiod, wave_normalize, wave_excess.
Note that the loop type bit {(wave_mode bit 6) is not utilized by the SP for playback, but is intended to preserve centrol
info imported with the wave, and will be retransmitted correctly if a wave is uploaded from the SP via MIDI or SCSI.

The following parameters require special explanation:

wave_pitch indicates the intrinsic musical pitch of the wave. This is based on the system defined in the MIDI tuning
dump standard for mapping specific audio frequencies to a tuning scale; with modifications to avoid lengthy
computations during playback. wav_pitch/100 {integer portion only) yields a semitone number which corresponds
directly to the MIDI note number normally associated with the indicated semitone - e.g., 60 for middle C. wav_pitch
mod 100 yields a number of cents upward transpose from the indicated semitone - thus the musical pitch may be
expressed very precisely and is not confined to any particular system of musical pitches. These numbers are rolled
into a single unsigned 16-bit value for speedy handling during playback. Note that this is similar to, but not identical
to, the enumeration used in the tuning dump standard, and is not resolved as precisely. Also note that the indicated
musical pitch is strictly advisory - it is potentially descriptive of the content of the wave if it is used in the intended
manner, but bears no direct relationship to the wave data itself and in many cases will be an arbitrary or default value
(e.g., with any unpitched sound), even though it-always plays a part in determining playback pitch.

wave_checksum is an intrinsic property of a wave, computed as the simple two’s complement sum of all sample
words when the wave is imported from non-SP sources, or when it is edited. The wave checksurn provides a more
definitive identification of a wave than is possible with wave name and wave size alone. This is used internally by the
SP in certain disk-load operations to avoid redundant wave loads, thus minimizirig load time, maximizing sample
memory usage, and keeping the integrity of hierarchical data sets intact. A sophisticated remote data set manager
could utilize wave_checksum in a similar way to avoid redundant wave downloads and maximize sample memory
usage. In a case where a user has copied and edited a wave without changing its narme, wave_checksum provides
the only definitive way to distinguish between the original wave and the modified one.

struct wave_control_block /* this definition is for format code 0x00 */
{

unsigned char.wave_name[14];; /* - name of wave - ASClI string. */

unsigned char wave_mode;r /% bit 7: 1 = loop enabled */

/* 0 = loop disabled */

/* - bitb: 1 = fwd-revloop */

/* 0.= fwd-only loop */

/¥ bhit b -1 = stereo wave - ®/

Sl 0 = mono wave : . %/

/* bits 4-0: undefined, always 0. : */

signed

unsigned

unsigned

unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
signed

unsigned

unsigned

b

char wave_finetune;

long wave_location;

int wave_size;

int wave_checksum;

long wave_playstart;

long wave_playend;

long wave_wordlength;

long wave_loopstart;
long wave_loopend;
long wave_loopfract;
long wave_samperiod;
int wave_normalize;
int wave_pitch;

char wave_excess[8];

/*

/*
/*

/*

/*
/‘k

-
P
P
-
i
-
-
,*
P
P

fine-tune offset

block address. of wave in wave memory,
relative to sample ram begin address.

number of 1k-word blocks alloc’d for wave.

wave checksum - used in conjunction with

wave name for positive wave identification.

playback start (fruncation) address.
playback end (truncation)} address.

actual length of wave in words.

loop start address.*/

loop end address. */

loop length fraction portion.

wave sample period (as recorded) in nsec.
tuning offset for sample rate normalization.
intrinsic musical pitch of wave.

undefined, reserved - all bytes == 0.

Tone Block Data Object: 80 (0x50) bytes

The valid object number range for this object is 0-199.

Apart from tone_variety and the reserved expansion space in tone_excess, there are no unmodifiable values in the

tone block object..

Full documentation of this structure - i.e., specific parameter value limits and definitions of selection values - will be

developed at a later date. Here are some useful generalizations:

* most “adjustment” parameters - Those with “amt”, “time”, or “sens” in the name - are 0 to 99 {unsigned) or
-99 to +99 (signed) parameters. One exception is startmod_quant, for which the internal ‘value range is 0-127.
If in doubt, find the relevant user screen on the SP and see what the adjustment range of the parameter in question

is. Most of them correspond very directly to their internal representation.

s ‘“selection” parameters

Those with “sel” or *src¢” in the name - have a minimum index of 0 and go up
from there. Refer to the unit for definitions of each value and upper limit values for each variable. Be especially
careful to correctly establish and enforce upper limit values for such variables, as they are especially prone to

causing immediate crashes if their upper limits are exceeded.

Some of the “adjustment” parameters shown here as unsigned are not inherently unsigned, but are currently not
defined for negative values. It is possible that the definitions of some of these will be extended in the future to make
use of negative value ranges. As a point of defensive coding, it may be wise to define these as signed variables and
to develop around them accordingly, in order to avoid having to rework them later. Bit-field variables are obviously
exempt from this possibility. wave_link (which is actually a “selection” variable) *must* be unsigned, as it has a

0-199 range.

*/
*/
*/
*/
*/

19

20

A tone block dump message sent to the SP with the intention of creating a new tone in the SP will be rejected if there '
is insufficient free parameter memory available in the SP to allow creation of the new tone.

struct

|
unsigned
unsigned
unsigned

unsigned

signed
unsigned
unsigned
unsigned
signed

unsigned
struct

unsigned
unsigned
unsigned
signed
signed
unsigned
signed
unsigned
unsigned
signed
signed -

signed -

tone_block

char fone_name[14];
char tone_variety;
char wave_link;

char tone_mode;

char env1_att_time;
char env1_sus_time;
char env1_dec_time;
char env1_rel_time;
char env2_atf_time;

char env2_sus_time;
tone_block

char envZ2_dec_time;
char env2_rel_time;
chér dca_env_sel;
char dca_vel_sens;
char dca_lfo_amt;
char dca_mod_src;
char dca_mod_amt;
char dcf_base_freq;

char dcf_env_sel;

char def_env_amt;

‘char dcf_vel_sens;

char dcf_Ilfo_amt;

/'k

this definition is for format code 0x00

name of tone - ASCII string.

always == 0 until further notice.

links tone to wave by wave number 0-199,

bit 7: 0 = use wave mode
1 = force stereo to mono
(per bit 6)

bit 6: 0 = force stereo to left-only

1 = force stereo to right-only

" bits 5-0: undefined, always 0.

envelope 1 attack time.
envelope 1 sustain time.
envelope 1 decay time.
envelope 1 release time.
envelope 2 attack time.

envelope 2 sustain time.
this definition is for format code 0x00

envelope 2 decay time.
envelope 2 release time.
DCA envelope select.
DCA velocity sensitivity.
DCA LFO amount.

DCA aux mod source.
DCA aux mod amount.
DCF base cutoff frequency.
DCF envelope select.
DCF envelope amount.
DCF velocity sensitivity.

DCF LFO amount.

*/

unsigned
signed
unsigned
signed
signed
signed
unsigned

signed

unsigned .

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

struct

signed
unsigned
unsigned

signed

char def_mod_sre;
char def_mod_amt;
char dco_env_sel;
char dco_env_amt;
char dco_vel_sens;
char dco_lfo_amt;
char dco_mod_src;
char dco_mod_amt;
char Ifo_speed;
char Ifo_shape;
char lfo_base_amit;
char lfo_speed_src;
char lfo._speed_amt;
char lfo_amt_src;

char Ifo_amt_amit;

char dco_modmode;

tone_block

char startmod_amt;
char startmod_src;
char pan_env_sel;

char pan_env_amt;

DCF aux mod source.

DCF aux mod amount.

DCO envelope select.

DCO envelope amount.

DCO velocity sensitivity.

DCO LFO amount.

DCO aux mod source.

DCO aux mod amount.

LFO speed setting.

LFO waveshape setting.

LFO base amount setting.

LFO speed mod source.

LFO speed mod amount.

LFO amount mod source.

LFO amount mod amount.

DCO modulation mode switches - bit-mapped.

bit 7:

this definition is for format code 0x00

bit &:

bit 5:

bit 4:

bit 3:

bit 2:

bit 1:

bit O:

undefined, always 0.

0 = unipolar aux mod

1 = bipolar aux mod
0 = direct LFO

1 = inverted LFO

0 = bipolar LFO

1 = unipolar LFO

0 = summed LFO mod

1 = scaled LFO mod

0 = summed aux mod

1 = scaled aux mod
0 = summed vel mod
1 = scaled vel mod

0 = summed env mod

1 = scaled env mod

wave play start mod amount.

wave play start mod source.

pan envelope select.

pan envelope amount.

21

22

signed char pan_vel_sens; /* pan velocity sensitivity. */

signed char pan_lfo_ami; /* pan LFO amount. */
unsigned char pan_mod_src; /* pan aux mod source. */
signed char pan_mod_amt; /* pan aux mod amount, */
unsigned char pan_modmode; /* pan modulation switches - bit-mapped. */
/* bit 7: undefined, always 0. */
/* bit 6: 0 = unipolar aux mod */
/¥ 1 = bipolar aux mod */
/* bit 5: 0 = direct LFO */
/* 1 = inverted LFO */
/* bit 4: 0 = bipolar LFOQ */
/* 1 = unipolar LFO */
/* bit 3: 0 = summed LFO mod */
[* 1 = scaled LFO mod */
/* bit 2:, 0 = summed aux mod */
/* 1 = scaled aux mod */
/* bit 1: 0 = summed vel mod */
/* ' 1 = scaled vel mod */
/* bit O: 0 = summed env mod ®/
/* 1 = scaled env mod */
unsigned char tone_switches1; /* sundry other {one switches: */
/* bits 7-2: undefined, always 0. : */
/¥ bit 1: 0 = DCF direct LFO */
/* 1 = DCF inverted LFO */
/* bit 0: 0 = DCA direct LFO ' */
A 1 = DCA inverted LFO s */
struct tone_block /¥ this definition is for format code 0x00 */
unsigned char startmod_quant; /* wave play start mod quantize (# of steps). */

unsigned char tone_excess[18]; /* undefined, reserved - all bytes == 0. */
b |

Map Block Data Object: 32 + 16n (0x20 + 0x10n) bytes (n = number of zones)

The valid object number range for this object is 0-127.

The map block is a variable-sized structure consisting of a map header block followed by one or more map zone
blocks. Each of these component objects is described below. Messages are defined for requesting, transferring and
deleting whole map blocks containing any number of zones. These messages are fastest, simplest and most efficient
for obtaining map information from the SP or for transferring it to the SP from a librarian (i.e., for bulk data transfers).
Hewever, because map blocks can potentially get quite large, interactive editing functions may be better served by
the messages which deal direcily with map header blocks and map zone blocks. The following sections on map
header blocks and map zone blocks contain additional detailed information which is crucial to the correct
construction of complete map blocks for transmission to the SP.

A map block dump message sent to the SP with the intention of creating a new map in the SP will be rejected if there
is insufficient free parameter memory available in the SP to allow creation of the new map. A map block dump
message sent to the SP with the intention of replacing an existing map in the SP will be rejected if the new map is
larger than the one being replaced and there is insufficient free parameter mernory available in the SP to satlsfy the
additional memeory requirement.

Map Header Block Data Object: 32 (0x20) bytes

The valid object number range for this object is 0-127.

Each map block begins with a map header specifying map-wide parameters. Messages are defined for requesting
and transferring the map header block separately from the map block. This is useful for updating parameters in an
existing map block without retransmitting the entire map block. This can be advantageous since map blocks can
potentially get quite large. At this time, the modifiable parameters include map_name and map_tune_sys {the latter

is not currently implemented and for the time being should be left at zero). The other parameters in a map header.

block cannot be directly altered via system exclusive messages. These messages cannot be used to create new map
blocks or map header blocks - they can only address existing maps.

struct map_header_block /* this definition is for format code 0x00 */
{

unsigned char map_name[14}; /* name of map - ASCI! string. */
unsigned char map_head_variety; /* always == O until further notice. *f
unsigned char map_tune_sys; /* tuning system selector for this map. */
unsigned char map_numzones; /¥ number of map zones *** minus 1 ***. ®/
unsigned char map_head_excess[15]; /* undefined, reserved - all bytes == 0. */

R
Map Zone Block Data Object: 16 (0x10) bytes

The valid zone selector range is 0-127 - see discussion below.

Apart from zone_variety and the reserved expansion space in zone_excess, there are no unmodifiable values in the
zone block object.

A map block contains one map zone block for each defined zone. A map may containno fewer than one and no more
than 128 zones. The zones in a map are always numbered consecutively from zero through [number of zones - 1]
in order of their position in the map block. When a zone block is added to or deleted from a map, all higher-numbered
zones are renumbered accordingly. Physical ordering of zone blocks in'a map block, and thus the numbering of map
zones, is dictated by the note number ranges encompassed by each zone: zone blocks are strictly ordered according
to increasing note number range. No note may be mapped into more than one zone in any given map (i.e., zones
in a map are not permitted to overlap other zones in the same map). The low and high note limits in a zone may be
equal. : :

Messages are defined for requesting, transferring and deleting individual map zone blocks. These messages can only
address existing maps. They are useful for adding, deleting or modifying zones without retransmitting the entire map
block. This can be advantageous since map blocks can potentially get quite large. To circumvent the complications
and potential confusion which could result from attempting to directly use the dynamically-assigned zone numbers,
zone block operations messages are addressed using a note number value as a zone selector in addition to the map
nurnber. This is the “zzmm? flavor of object number “ooo0o” in object access messages - the map number appears
in the Is byte of the “ooco” word, just as it does for map block and map header block messages, but the ms byte
additionally contains the zone selector / note number value. This value selects the zone whose note range includes
that note. Zone block dump requests and delete requests will cause dumping or deletion of the selected zone block
or will be rejected if no such zone exists - i.e., if the indicated note is not mapped into any zone in the specified map.
Zone block dumps obtained from the SP will place the current zone low note limit value in the zz field of the object
number zzmm. Zone block dumps sent to the SP will cause updating of the selected zone block or creation of a new
zone block if no such zone exists. Thus, a master device application effecting map zone edits via SysEx deals strictly

with zone keyboard positions, which it can reasonably be expectedto keep track of, and is not required to stay abreast .

23

